rxn_ord¶
ckbit.rxn_ord
-
ckbit.rxn_ord.
MAP
(filename, model_name='rxn_ord', priors=None, verbose=True, init_random=False, seed=None, int_init=10, rxn_ord_init=0, sigma_init=1)¶ MAP estimation for reaction order estimation
- Parameters
filename (str) – Filename of Excel input file that contains the appropriately formated reaction order data (see examples)
model_name (str, optional) – Name of model, used for saving/loading compilied Stan code, Default is ‘rxn_ord’
priors (list of str, optional) – User defined prior distributions, Must have appropriate format (see examples), Default is None
verbose (bool, optional) – Flag to signal whether Stan intermediate output should be piped to terminal, Default is True
trace (bool, optional) – Flag to signal whether traceplots should be generated upon the run’s completion, Default is True
init_random (bool, optional) – Flag to signal whether the initialization should be random or if it should use user specified values, Default is False
seed (int, optional) – A positive integer used to seed the random number generation, Default is np.random.randint(0, 1E9)
int_init (float, optional) – Initialization point for the sampler for intercept, Default is 10
rxn_ord_init (float, optional) – Initialization point for the sampler for rxn order, Default is 0
sigma_init (float, optional) – Initialization point for the sampler for sigma, Default is 1
- Returns
point_estimates – Dictionary containing values corresponding to modes of posterior
- Return type
dict
-
ckbit.rxn_ord.
MCMC
(filename, model_name='rxn_ord', priors=None, warmup=None, iters=5000, chains=2, n_jobs=1, verbose=True, seed=None, trace=True, init_random=False, control={'adapt_delta': 0.9999, 'max_treedepth': 100}, int_init=10, rxn_ord_init=0, sigma_init=1)¶ Bayesian inference using MCMC sampling for reaction order estimation
- Parameters
filename (str) – Filename of Excel input file that contains the appropriately formated reaction order data (see examples)
model_name (str, optional) – Name of model, used for saving/loading compilied Stan code, Default is ‘rxn_ord’
priors (list of str, optional) – User defined prior distributions, Must have appropriate format (see examples), Default is None
warmup (int, optional) – Number of warmup iterations for MCMC sampler, Must be less than the number of total iterations, Default is None, which sets warmup equal to half of iters (the Stan default)
iters (int, optional) – Number of total interations for MCMC sampler for each chain, Must be greater than the warmup, total number of samples useable for MCMC inference will equal (chains*(iters-warmup)), Default is 5000
chains (int, optional) – Number of chains for MCMC sampler, Default is 2
n_jobs (int, optional) – Number of jobs to run in parallel for MCMC sampler, maximum is number of cores the computer has, Default is 1
verbose (bool, optional) – Flag to signal whether Stan intermediate output should be piped to terminal, Default is True
seed (int, optional) – A positive integer used to seed the random number generation, use one seed even when multiple chains are used since the other chain’s seeds are generated from the first chain’s to avoid dependency among random number streams, set this seed for repeatable inference sampling runs, Default is np.random.randint(0, 1E9)
trace (bool, optional) – Flag to signal whether traceplots should be generated upon the run’s completion, Default is True
init_random (bool, optional) – Flag to signal whether the initialization should be random or if it should use user specified values, Default is False
control (dict, optional) – Dictionary of settings for MCMC sampler, Default is {‘adapt_delta’:0.9999, ‘max_treedepth’:100}, more information at: https://mc-stan.org/docs/2_23/reference-manual/hmc-algorithm-parameters.html
int_init (float, optional) – Initialization point for the sampler for intercept, Default is 10
rxn_ord_init (float, optional) – Initialization point for the sampler for rxn order, Default is 0
sigma_init (float, optional) – Initialization point for the sampler for sigma, Default is 1
- Returns
fit (Stan object) – Stan object containing results of the MCMC run
sample_vals (dict) – Dictionary of values collected by the MCMC sampler
-
ckbit.rxn_ord.
StanModel_cache
(model_code, model_name, **kwargs)¶ Function for saving/loading compiled Stan code to avoid recompilation
- Parameters
model_code (str) – Stan code written in proper format
model_name (str, optional) – Name of model, used for saving/loading compilied Stan code
- Returns
sm – Stan object from pystan function StanModel
- Return type
Stan model
-
ckbit.rxn_ord.
VI
(filename, model_name='rxn_ord', priors=None, iters=2000000, algorithm='fullrank', verbose=True, seed=None, sample_file='./samples.csv', diagnostic_file='./diagnostics.csv', grad_samples=1, elbo_samples=100, tol_rel_obj=0.01, adapt_iter=50, eval_elbo=100, output_samples=10000, eta=0.2, adapt_engaged=False, trace=True, init_random=False, int_init=10, rxn_ord_init=0, sigma_init=1)¶ Bayesian inference using VI for reaction order estimation
- Parameters
filename (str) – Filename of Excel input file that contains the appropriately formated reaction order data (see examples)
model_name (str, optional) – Name of model, used for saving/loading compilied Stan code, Default is ‘rxn_ord’
priors (list of str, optional) – User defined prior distributions, Must have appropriate format (see examples), Default is None
iters (int, optional) – Maximum number of iterations of the variational density to achieve minimizing the ELBO before the VI algorithm terminates, Default is 2,000,000
algorithm (str, optional) – Algorithm to use for VI, either ‘meanfield’ (for uncorrelated posteriors) or ‘fullrank’ (for correlated posteriors), Default is ‘fullrank’
verbose (bool, optional) – Flag to signal whether Stan intermediate output should be piped to terminal, Default is True
seed (int, optional) – A positive integer used to seed the random number generation, Default is np.random.randint(0, 1E9)
sample_file (str, optional) – Filename where the VI samples are saved to, Default is ‘./samples. csv’
diagnostic_file (str, optional) – Filename where the VI diagonstics are saved to, Default is ‘./ diagnostics.csv’
grad_samples (int, optional) – Number of gradient evaluations to make to estimate gradient for VI solver, Default is 1
elbo_samples (int, optional) – Number of elbo evaluations to make to estimate ELBO for VI solver, Default is 100
tol_rel_obj (float, optional) – Relative tolerance convergence criteria for median and mean of the change in the ELBO for VI solver, Default is 0.01
adapt_iter (int, optional) – Number of iterations for adaptive tuning of eta, Default is 50
eval_elbo (int, optional) – Number of iterations between ELBO evaluations for VI solver, Default is 100
output_samples (int, optional) – Number of samples to draw from final approximation of posterior from VI solver, Default is 10,000
eta (float, optional) – Positive, stepsize weighing parameter for VI solver, Ignored if adapt_iter is True, Default is 0.2
adapt_engaged – Flag to signal whether eta should be automatically tuned, Default is False
trace (bool, optional) – Flag to signal whether traceplots should be generated upon the run’s completion, Default is True
int_init (float, optional) – Initialization point for the sampler for intercept, Default is 10
rxn_ord_init (float, optional) – Initialization point for the sampler for rxn_ord, Default is 0
sigma_init (float, optional) – Initialization point for the sampler for sigma, Default is 1
init_random (bool, optional) – Flag to signal whether the initialization should be random or if it should use user specified values, Default is False
- Returns
fit (Stan object) – Stan object containing results of the VI run
sample_vals (dict) – Dictionary of values collected by the VI sampler
-
ckbit.rxn_ord.
rxn_ord_exp_data
(filename)¶ Processes Excel file with reaction order data
- Parameters
filename (str) – Filename of Excel input file that contains the appropriately formated reaction order data (see examples)
- Returns
rxn_ord_data – Dictionary containing reaction order data inputs for Stan code
- Return type
dict
-
ckbit.rxn_ord.
write_rxn_ord_stan_code
(priors=None)¶ Writes Stan code used for reaction order estimation
- Parameters
priors (list of str, optional) – User defined prior distributions, Must have appropriate format (see examples) in accordance with Stan, Default is None
- Returns
code_rxn_ord – Code written in Stan syntax used for reaction order estimation
- Return type
str