pmutt.empirical.nasa.SingleNasa9
- class pmutt.empirical.nasa.SingleNasa9(T_low, T_high, a)
Bases:
EmpiricalBase
Stores the NASA9 polynomial for a defined interval. Inherits from
EmpiricalBase
- a
NASA9 polynomial to use between T_low and T_high
- Type:
(9,) numpy.ndarray
- __init__(T_low, T_high, a)
Methods
__init__
(T_low, T_high, a)compare_CpoR
([T])Compares the dimensionless heat capacity of the statistical model and the empirical model
compare_GoRT
([T])Compares the dimensionless Gibbs energy of the statistical model and the empirical model
compare_HoRT
([T])Compares the dimensionless enthalpy of the statistical model and the empirical model
compare_SoR
([T])Compares the dimensionless entropy of the statistical model and the empirical model
from_dict
(json_obj)Recreate an object from the JSON representation.
get_Cp
(units, **kwargs)Calculate the heat capacity (constant P)
get_CpoR
(T)Calculate the dimensionless heat capacity
get_Cv
(units, **kwargs)Calculate the heat capacity (constant V)
get_CvoR
()Default method to calculate the dimensionless heat capacity at constant volume.
get_F
(units[, T])Calculate the Helmholtz energy
get_FoRT
(**kwargs)Calculates the dimensionless Helmholtz energy
get_G
(units[, T])Calculate the Gibbs energy
get_GoRT
(**kwargs)Calculates the dimensionless Gibbs free energy
get_H
(units[, T])Calculate the enthalpy
get_HoRT
(T)Calculate the dimensionless enthalpy
get_S
(units, **kwargs)Calculate the entropy
get_SoR
(T)Calculate the dimensionless heat capacity
get_U
(units[, T])Calculate the internal energy
get_UoRT
()Default method to calculate the dimensionless internal energy.
get_q
()Default method to calculate the partition coefficient.
plot_empirical
([T_low, T_high, Cp_units, ...])Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationshipplot_statmech
([T_low, T_high, Cp_units, ...])Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationshipplot_statmech_and_empirical
([T_low, T_high, ...])Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationshipto_cti
([line_indent])Writes the object in Cantera's CTI format.
to_dict
()Represents object as dictionary with JSON-accepted datatypes
- compare_CpoR(T=None)
Compares the dimensionless heat capacity of the statistical model and the empirical model
- Parameters:
T ((N,) numpy.ndarray or float, optional) – Temperatures (in K) to calculate CpoR. If None, generates a list of temperatures between self.T_low and self.T_high
- Returns:
T ((N,) numpy.ndarray or float) – Temperatures in K
CpoR_model ((N,) numpy.ndarray or float) – Dimensionless heat capacity of original model
CpoR_empirical (((N,) numpy.ndarray or float) – Dimensionless heat capacity of empirical model
- compare_GoRT(T=None)
Compares the dimensionless Gibbs energy of the statistical model and the empirical model
- Parameters:
T ((N,) numpy.ndarray or float, optional) – Temperatures (in K) to calculate CpoR. If None, generates a list of temperatures between self.T_low and self.T_high
- Returns:
T ((N,) numpy.ndarray or float) – Temperatures in K
CpoR_model ((N,) numpy.ndarray or float) – Dimensionless heat capacity of original model
CpoR_empirical ((N,) numpy.ndarray or float) – Dimensionless heat capacity of empirical model
- compare_HoRT(T=None)
Compares the dimensionless enthalpy of the statistical model and the empirical model
- Parameters:
T ((N,) numpy.ndarray or float, optional) – Temperatures (in K) to calculate CpoR. If None, generates a list of temperatures between self.T_low and self.T_high
- Returns:
T ((N,) numpy.ndarray or float) – Temperatures in K
CpoR_model ((N,) numpy.ndarray or float) – Dimensionless heat capacity of original model
CpoR_empirical (((N,) numpy.ndarray or float) – Dimensionless heat capacity of empirical model
- compare_SoR(T=None)
Compares the dimensionless entropy of the statistical model and the empirical model
- Parameters:
T ((N,) numpy.ndarray or float, optional) – Temperatures (in K) to calculate CpoR. If None, generates a list of temperatures between self.T_low and self.T_high
- Returns:
T ((N,) numpy.ndarray or float) – Temperatures in K
CpoR_model ((N,) numpy.ndarray or float) – Dimensionless heat capacity of original model
CpoR_empirical (((N,) numpy.ndarray or float) – Dimensionless heat capacity of empirical model
- classmethod from_dict(json_obj)
Recreate an object from the JSON representation.
- Parameters:
json_obj (dict) – JSON representation
- Returns:
Nasa
- Return type:
Nasa object
- get_Cp(units, **kwargs)
Calculate the heat capacity (constant P)
- get_CpoR(T)
Calculate the dimensionless heat capacity
- Parameters:
T (float or (N,) numpy.ndarray) – Temperature(s) in K
- Returns:
CpoR – Dimensionless heat capacity
- Return type:
float or (N,) numpy.ndarray
- get_Cv(units, **kwargs)
Calculate the heat capacity (constant V)
- get_CvoR()
Default method to calculate the dimensionless heat capacity at constant volume.
- Returns:
CvoR – Returns 0
- Return type:
- get_F(units, T=298.15, **kwargs)
Calculate the Helmholtz energy
- get_FoRT(**kwargs)
Calculates the dimensionless Helmholtz energy
- Parameters:
kwargs (keyword arguments) – Parameters needed by
get_UoRT
andget_SoR
- Returns:
FoRT – Dimensionless Helmholtz energy
- Return type:
- get_G(units, T=298.15, **kwargs)
Calculate the Gibbs energy
- get_GoRT(**kwargs)
Calculates the dimensionless Gibbs free energy
- Parameters:
kwargs (keyword arguments) – Parameters needed by
get_HoRT
andget_SoR
- Returns:
GoRT – Dimensionless Gibbs free energy
- Return type:
- get_H(units, T=298.15, **kwargs)
Calculate the enthalpy
- get_HoRT(T)
Calculate the dimensionless enthalpy
- Parameters:
T (float or (N,) numpy.ndarray) – Temperature(s) in K
- Returns:
HoRT – Dimensionless enthalpy
- Return type:
float or (N,) numpy.ndarray
- get_S(units, **kwargs)
Calculate the entropy
- get_SoR(T)
Calculate the dimensionless heat capacity
- Parameters:
T (float or (N,) numpy.ndarray) – Temperature(s) in K
- Returns:
CpoR – Dimensionless heat capacity
- Return type:
float or (N,) numpy.ndarray
- get_U(units, T=298.15, **kwargs)
Calculate the internal energy
- get_UoRT()
Default method to calculate the dimensionless internal energy.
- Returns:
UoRT – Returns 0
- Return type:
- get_q()
Default method to calculate the partition coefficient.
- Returns:
q – Returns 1
- Return type:
- plot_empirical(T_low=None, T_high=None, Cp_units=None, H_units=None, S_units=None, G_units=None)
Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationship- Parameters:
T_low (float) – Lower temperature in K. If not specified,
T_low
attribute used.T_high (float) – Upper temperature in K. If not specified,
T_high
attribute used.Cp_units (str) – Units to plot heat capacity. See
R()
for accepted units. If not specified, dimensionless units used.H_units (str) – Units to plot enthalpy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.S_units (str) – Units to plot entropy. See
R()
for accepted units. If not specified, dimensionless units used.G_units (str) – Units to plot Gibbs free energy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.
- Returns:
figure (matplotlib.figure.Figure) – Figure
axes (tuple of matplotlib.axes.Axes.axis) – Axes of the plots. 0. Cp 1. H 2. S 3. G
- plot_statmech(T_low=None, T_high=None, Cp_units=None, H_units=None, S_units=None, G_units=None, use_references=True)
Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationship- Parameters:
T_low (float) – Lower temperature in K. If not specified,
T_low
attribute usedT_high (float) – Upper temperature in K. If not specified,
T_high
attribute usedCp_units (str) – Units to plot heat capacity. See
R()
for accepted units. If not specified, dimensionless units used.H_units (str) – Units to plot enthalpy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.S_units (str) – Units to plot entropy. See
R()
for accepted units. If not specified, dimensionless units used.G_units (str) – Units to plot Gibbs free energy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.
- Returns:
figure (matplotlib.figure.Figure) – Figure
axes (tuple of matplotlib.axes.Axes.axis) – Axes of the plots. 0. Cp 1. H 2. S 3. G
- plot_statmech_and_empirical(T_low=None, T_high=None, Cp_units=None, H_units=None, S_units=None, G_units=None, use_references=True)
Plots the thermodynamic profiles between
T_low
andT_high
using empirical relationship- Parameters:
T_low (float) – Lower temperature in K. If not specified,
T_low
attribute usedT_high (float) – Upper temperature in K. If not specified,
T_high
attribute usedCp_units (str) – Units to plot heat capacity. See
R()
for accepted units. If not specified, dimensionless units used.H_units (str) – Units to plot enthalpy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.S_units (str) – Units to plot entropy. See
R()
for accepted units. If not specified, dimensionless units used.G_units (str) – Units to plot Gibbs free energy. See
R()
for accepted units but omit the ‘/K’ (e.g. J/mol). If not specified, dimensionless units used.
- Returns:
figure (matplotlib.figure.Figure) – Figure
axes (tuple of matplotlib.axes.Axes.axis) – Axes of the plots. 0. Cp 1. H 2. S 3. G
- to_cti(line_indent=False)
Writes the object in Cantera’s CTI format.