pmutt.statmech.trans.FreeTrans
- class pmutt.statmech.trans.FreeTrans(n_degrees=3, molecular_weight=None, atoms=None)
Bases:
_ModelBase
Translational mode using ideal gas assumption. Equations sourced from:
Sandler, S. I. An Introduction to Applied Statistical Thermodynamics; John Wiley & Sons, 2010.
- atoms
An atoms object can be used to calculate molecular weight. Not stored by FreeTrans
- Type:
ase.Atoms object, optional
- __init__(n_degrees=3, molecular_weight=None, atoms=None)
Methods
__init__
([n_degrees, molecular_weight, atoms])from_dict
(json_obj)Recreate an object from the JSON representation.
get_Cp
(units, **kwargs)Calculate the heat capacity (constant P)
get_CpoR
()Calculates the dimensionless heat capacity at constant pressure
get_Cv
(units, **kwargs)Calculate the heat capacity (constant V)
get_CvoR
()Calculates the dimensionless heat capacity at constant volume
get_F
(units[, T])Calculate the Helmholtz energy
get_FoRT
(T[, P])Calculates the dimensionless Helmholtz energy
get_G
(units[, T])Calculate the Gibbs energy
get_GoRT
(T[, P])Calculates the dimensionless Gibbs energy
get_H
(units[, T])Calculate the enthalpy
get_HoRT
()Calculates the dimensionless enthalpy
get_S
(units, **kwargs)Calculate the entropy
get_SoR
(T[, P])Calculates the dimensionless entropy
get_U
(units[, T])Calculate the internal energy
get_UoRT
()Calculates the dimensionless internal energy
get_V
(T, P)Calculates the molar volume of an ideal gas at T and P
get_q
(T[, P])Calculates the partition function
to_dict
()Represents object as dictionary with JSON-accepted datatypes
- classmethod from_dict(json_obj)
Recreate an object from the JSON representation.
- Parameters:
json_obj (dict) – JSON representation
- Returns:
Obj
- Return type:
Appropriate object
- get_Cp(units, **kwargs)
Calculate the heat capacity (constant P)
- get_CpoR()
Calculates the dimensionless heat capacity at constant pressure
\(\frac{Cp^{trans}}{R}=\frac{Cv^{trans}}{R} + 1\)
- Returns:
CpoR_trans – Translational dimensionless heat capacity at constant P
- Return type:
- get_Cv(units, **kwargs)
Calculate the heat capacity (constant V)
- get_CvoR()
Calculates the dimensionless heat capacity at constant volume
\(\frac{Cv^{trans}}{R}=\frac{n_{degrees}}{2}\)
- Returns:
CvoR_trans – Translational dimensionless heat capacity at constant V
- Return type:
- get_F(units, T=298.15, **kwargs)
Calculate the Helmholtz energy
- get_FoRT(T, P=1.0)
Calculates the dimensionless Helmholtz energy
\(\frac{A^{trans}}{RT}=\frac{U^{trans}}{RT}-\frac{S^{trans}}{R}\)
- get_G(units, T=298.15, **kwargs)
Calculate the Gibbs energy
- get_GoRT(T, P=1.0)
Calculates the dimensionless Gibbs energy
\(\frac{G^{trans}}{RT}=\frac{H^{trans}}{RT}-\frac{S^{trans}}{R}\)
- get_H(units, T=298.15, **kwargs)
Calculate the enthalpy
- get_HoRT()
Calculates the dimensionless enthalpy
\(\frac{H^{trans}}{RT}=\frac{U^{trans}}{RT} + 1\)
- Returns:
HoRT_trans – Translational enthalpy
- Return type:
- get_S(units, **kwargs)
Calculate the entropy
- get_SoR(T, P=1.0)
Calculates the dimensionless entropy
\(\frac{S^{trans}}{R}=1+\frac{n_{degrees}}{2}+\log\bigg(\big( \frac{2\pi mk_bT}{h^2})^\frac{n_{degrees}}{2}\frac{RT}{PN_a}\bigg)\)
- get_U(units, T=298.15, **kwargs)
Calculate the internal energy
- get_UoRT()
Calculates the dimensionless internal energy
\(\frac{U^{trans}}{RT}=\frac{n_{degrees}}{2}\)
- Returns:
UoRT_trans – Translational internal energy
- Return type:
- get_V(T, P)
Calculates the molar volume of an ideal gas at T and P
\(V_m=\frac{RT}{P}\)
- get_q(T, P=1.0)
Calculates the partition function
\(q_{trans} = \bigg(\frac{2\pi \sum_{i}^{atoms}m_ikT}{h^2} \bigg)^\frac {n_{degrees}} {2}V\)