pmutt.statmech.trans.FreeTrans
- class pmutt.statmech.trans.FreeTrans(n_degrees=3, molecular_weight=None, atoms=None)
- Bases: - _ModelBase- Translational mode using ideal gas assumption. Equations sourced from: - Sandler, S. I. An Introduction to Applied Statistical Thermodynamics; John Wiley & Sons, 2010. 
 - atoms
- An atoms object can be used to calculate molecular weight. Not stored by FreeTrans - Type:
- ase.Atoms object, optional 
 
 - __init__(n_degrees=3, molecular_weight=None, atoms=None)
 - Methods - __init__([n_degrees, molecular_weight, atoms])- from_dict(json_obj)- Recreate an object from the JSON representation. - get_Cp(units, **kwargs)- Calculate the heat capacity (constant P) - get_CpoR()- Calculates the dimensionless heat capacity at constant pressure - get_Cv(units, **kwargs)- Calculate the heat capacity (constant V) - get_CvoR()- Calculates the dimensionless heat capacity at constant volume - get_F(units[, T])- Calculate the Helmholtz energy - get_FoRT(T[, P])- Calculates the dimensionless Helmholtz energy - get_G(units[, T])- Calculate the Gibbs energy - get_GoRT(T[, P])- Calculates the dimensionless Gibbs energy - get_H(units[, T])- Calculate the enthalpy - get_HoRT()- Calculates the dimensionless enthalpy - get_S(units, **kwargs)- Calculate the entropy - get_SoR(T[, P])- Calculates the dimensionless entropy - get_U(units[, T])- Calculate the internal energy - get_UoRT()- Calculates the dimensionless internal energy - get_V(T, P)- Calculates the molar volume of an ideal gas at T and P - get_q(T[, P])- Calculates the partition function - to_dict()- Represents object as dictionary with JSON-accepted datatypes - classmethod from_dict(json_obj)
- Recreate an object from the JSON representation. - Parameters:
- json_obj (dict) – JSON representation 
- Returns:
- Obj 
- Return type:
- Appropriate object 
 
 - get_Cp(units, **kwargs)
- Calculate the heat capacity (constant P) 
 - get_CpoR()
- Calculates the dimensionless heat capacity at constant pressure - \(\frac{Cp^{trans}}{R}=\frac{Cv^{trans}}{R} + 1\) - Returns:
- CpoR_trans – Translational dimensionless heat capacity at constant P 
- Return type:
 
 - get_Cv(units, **kwargs)
- Calculate the heat capacity (constant V) 
 - get_CvoR()
- Calculates the dimensionless heat capacity at constant volume - \(\frac{Cv^{trans}}{R}=\frac{n_{degrees}}{2}\) - Returns:
- CvoR_trans – Translational dimensionless heat capacity at constant V 
- Return type:
 
 - get_F(units, T=298.15, **kwargs)
- Calculate the Helmholtz energy 
 - get_FoRT(T, P=1.0)
- Calculates the dimensionless Helmholtz energy - \(\frac{A^{trans}}{RT}=\frac{U^{trans}}{RT}-\frac{S^{trans}}{R}\) 
 - get_G(units, T=298.15, **kwargs)
- Calculate the Gibbs energy 
 - get_GoRT(T, P=1.0)
- Calculates the dimensionless Gibbs energy - \(\frac{G^{trans}}{RT}=\frac{H^{trans}}{RT}-\frac{S^{trans}}{R}\) 
 - get_H(units, T=298.15, **kwargs)
- Calculate the enthalpy 
 - get_HoRT()
- Calculates the dimensionless enthalpy - \(\frac{H^{trans}}{RT}=\frac{U^{trans}}{RT} + 1\) - Returns:
- HoRT_trans – Translational enthalpy 
- Return type:
 
 - get_S(units, **kwargs)
- Calculate the entropy 
 - get_SoR(T, P=1.0)
- Calculates the dimensionless entropy - \(\frac{S^{trans}}{R}=1+\frac{n_{degrees}}{2}+\log\bigg(\big( \frac{2\pi mk_bT}{h^2})^\frac{n_{degrees}}{2}\frac{RT}{PN_a}\bigg)\) 
 - get_U(units, T=298.15, **kwargs)
- Calculate the internal energy 
 - get_UoRT()
- Calculates the dimensionless internal energy - \(\frac{U^{trans}}{RT}=\frac{n_{degrees}}{2}\) - Returns:
- UoRT_trans – Translational internal energy 
- Return type:
 
 - get_V(T, P)
- Calculates the molar volume of an ideal gas at T and P - \(V_m=\frac{RT}{P}\) 
 - get_q(T, P=1.0)
- Calculates the partition function - \(q_{trans} = \bigg(\frac{2\pi \sum_{i}^{atoms}m_ikT}{h^2} \bigg)^\frac {n_{degrees}} {2}V\)