pmutt.statmech.vib.DebyeVib
- class pmutt.statmech.vib.DebyeVib(debye_temperature, interaction_energy)
- Bases: - _ModelBase- Debye model of a crystal. Equations sourced from: - Sandler, S. I. An Introduction to Applied Statistical Thermodynamics; John Wiley & Sons, 2010. 
 - interaction_energy
- Interaction energy (\(u\)) per atom in eV. Default is 0 eV - Type:
- float, optional 
 
 - __init__(debye_temperature, interaction_energy)
 - Methods - __init__(debye_temperature, interaction_energy)- from_dict(json_obj)- Recreate an object from the JSON representation. - get_Cp(units, **kwargs)- Calculate the heat capacity (constant P) - get_CpoR(T)- Calculates dimensionless heat capacity (constant P) - get_Cv(units, **kwargs)- Calculate the heat capacity (constant V) - get_CvoR(T)- Calculates dimensionless heat capacity (constant V) - get_F(units[, T])- Calculate the Helmholtz energy - get_FoRT(T)- Calculates dimensionless Helmholtz energy - get_G(units[, T])- Calculate the Gibbs energy - get_GoRT(T)- Calculates dimensionless Gibbs energy - get_H(units[, T])- Calculate the enthalpy - get_HoRT(T)- Calculates dimensionless enthalpy - get_S(units, **kwargs)- Calculate the entropy - get_SoR(T)- Calculates dimensionless entropy - get_U(units[, T])- Calculate the internal energy - get_UoRT(T)- Calculates dimensionless internal energy - get_ZPE()- Calculate zero point energy - get_q(T)- Calculate the partition function - to_dict()- Represents object as dictionary with JSON-accepted datatypes - classmethod from_dict(json_obj)
- Recreate an object from the JSON representation. - Parameters:
- json_obj (dict) – JSON representation 
- Returns:
- Obj 
- Return type:
- Appropriate object 
 
 - get_Cp(units, **kwargs)
- Calculate the heat capacity (constant P) 
 - get_CpoR(T)
- Calculates dimensionless heat capacity (constant P) - \(\frac {C_P^{vib}}{R} = 3K\bigg(\frac{\Theta_D}{T}\bigg)\) - \(K\bigg(\frac{\Theta_D}{T}\bigg)=3\bigg(\frac{T}{\Theta_D} \bigg)^3 \int_0^{\frac{\Theta_D}{T}}\frac{x^4 e^x}{(e^x-1)^2}dx\) 
 - get_Cv(units, **kwargs)
- Calculate the heat capacity (constant V) 
 - get_CvoR(T)
- Calculates dimensionless heat capacity (constant V) - \(\frac {C_V^{vib}}{R} = 3K\bigg(\frac{\Theta_D}{T}\bigg)\) - \(K\bigg(\frac{\Theta_D}{T}\bigg)=3\bigg(\frac{T}{\Theta_D} \bigg)^3 \int_0^{\frac{\Theta_D}{T}}\frac{x^4 e^x}{(e^x-1)^2}dx\) 
 - get_F(units, T=298.15, **kwargs)
- Calculate the Helmholtz energy 
 - get_FoRT(T)
- Calculates dimensionless Helmholtz energy - \(\frac{F^{vib}}{RT}=\frac{U^{vib}}{RT}-\frac{S^{vib}}{R}\) 
 - get_G(units, T=298.15, **kwargs)
- Calculate the Gibbs energy 
 - get_GoRT(T)
- Calculates dimensionless Gibbs energy - \(\frac{G^{vib}}{RT}=\frac{H^{vib}}{RT}-\frac{S^{vib}}{R}\) 
 - get_H(units, T=298.15, **kwargs)
- Calculate the enthalpy 
 - get_HoRT(T)
- Calculates dimensionless enthalpy - \(\frac{H^{vib}}{RT} = \frac{u_D^o}{RT} + 3F\bigg(\frac{ \Theta_D}{T}\bigg)\) - \(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\) 
 - get_S(units, **kwargs)
- Calculate the entropy 
 - get_SoR(T)
- Calculates dimensionless entropy - \(\frac{S^{vib}}{R} = 3\bigg[F\bigg(\frac{\Theta_D}{T}\bigg) - G\bigg(\frac{\Theta_D}{T}\bigg)\bigg]\) - \(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\) - \(G\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3\int_0^{\frac{\Theta_D}{T}}x^2 \ln \bigg(1-e^{-x}\bigg)dx\) 
 - get_U(units, T=298.15, **kwargs)
- Calculate the internal energy 
 - get_UoRT(T)
- Calculates dimensionless internal energy - \(\frac{U^{vib}}{RT} = \frac{u_D^o}{RT} + 3F\bigg(\frac{ \Theta_D}{T}\bigg)\) - \(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\) 
 - get_ZPE()
- Calculate zero point energy - \(u^o_D = u^o +\frac{9}{8}R\Theta_D\) - Returns:
- zpe – Zero point energy in eV 
- Return type:
 
 - get_q(T)
- Calculate the partition function - \(q^{vib} = \exp\bigg(-\frac{u}{3k_B T} - \frac{3}{8} \frac{\Theta_D}{T} - G\big(\frac{\Theta_D}{T}\big)\bigg)\) - \(G\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3\int_0^{\frac{\Theta_D}{T}}x^2 \ln \bigg(1-e^{-x}\bigg)dx\)