pmutt.statmech.vib.DebyeVib
- class pmutt.statmech.vib.DebyeVib(debye_temperature, interaction_energy)
Bases:
_ModelBase
Debye model of a crystal. Equations sourced from:
Sandler, S. I. An Introduction to Applied Statistical Thermodynamics; John Wiley & Sons, 2010.
- interaction_energy
Interaction energy (\(u\)) per atom in eV. Default is 0 eV
- Type:
float, optional
- __init__(debye_temperature, interaction_energy)
Methods
__init__
(debye_temperature, interaction_energy)from_dict
(json_obj)Recreate an object from the JSON representation.
get_Cp
(units, **kwargs)Calculate the heat capacity (constant P)
get_CpoR
(T)Calculates dimensionless heat capacity (constant P)
get_Cv
(units, **kwargs)Calculate the heat capacity (constant V)
get_CvoR
(T)Calculates dimensionless heat capacity (constant V)
get_F
(units[, T])Calculate the Helmholtz energy
get_FoRT
(T)Calculates dimensionless Helmholtz energy
get_G
(units[, T])Calculate the Gibbs energy
get_GoRT
(T)Calculates dimensionless Gibbs energy
get_H
(units[, T])Calculate the enthalpy
get_HoRT
(T)Calculates dimensionless enthalpy
get_S
(units, **kwargs)Calculate the entropy
get_SoR
(T)Calculates dimensionless entropy
get_U
(units[, T])Calculate the internal energy
get_UoRT
(T)Calculates dimensionless internal energy
get_ZPE
()Calculate zero point energy
get_q
(T)Calculate the partition function
to_dict
()Represents object as dictionary with JSON-accepted datatypes
- classmethod from_dict(json_obj)
Recreate an object from the JSON representation.
- Parameters:
json_obj (dict) – JSON representation
- Returns:
Obj
- Return type:
Appropriate object
- get_Cp(units, **kwargs)
Calculate the heat capacity (constant P)
- get_CpoR(T)
Calculates dimensionless heat capacity (constant P)
\(\frac {C_P^{vib}}{R} = 3K\bigg(\frac{\Theta_D}{T}\bigg)\)
\(K\bigg(\frac{\Theta_D}{T}\bigg)=3\bigg(\frac{T}{\Theta_D} \bigg)^3 \int_0^{\frac{\Theta_D}{T}}\frac{x^4 e^x}{(e^x-1)^2}dx\)
- get_Cv(units, **kwargs)
Calculate the heat capacity (constant V)
- get_CvoR(T)
Calculates dimensionless heat capacity (constant V)
\(\frac {C_V^{vib}}{R} = 3K\bigg(\frac{\Theta_D}{T}\bigg)\)
\(K\bigg(\frac{\Theta_D}{T}\bigg)=3\bigg(\frac{T}{\Theta_D} \bigg)^3 \int_0^{\frac{\Theta_D}{T}}\frac{x^4 e^x}{(e^x-1)^2}dx\)
- get_F(units, T=298.15, **kwargs)
Calculate the Helmholtz energy
- get_FoRT(T)
Calculates dimensionless Helmholtz energy
\(\frac{F^{vib}}{RT}=\frac{U^{vib}}{RT}-\frac{S^{vib}}{R}\)
- get_G(units, T=298.15, **kwargs)
Calculate the Gibbs energy
- get_GoRT(T)
Calculates dimensionless Gibbs energy
\(\frac{G^{vib}}{RT}=\frac{H^{vib}}{RT}-\frac{S^{vib}}{R}\)
- get_H(units, T=298.15, **kwargs)
Calculate the enthalpy
- get_HoRT(T)
Calculates dimensionless enthalpy
\(\frac{H^{vib}}{RT} = \frac{u_D^o}{RT} + 3F\bigg(\frac{ \Theta_D}{T}\bigg)\)
\(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\)
- get_S(units, **kwargs)
Calculate the entropy
- get_SoR(T)
Calculates dimensionless entropy
\(\frac{S^{vib}}{R} = 3\bigg[F\bigg(\frac{\Theta_D}{T}\bigg) - G\bigg(\frac{\Theta_D}{T}\bigg)\bigg]\)
\(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\)
\(G\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3\int_0^{\frac{\Theta_D}{T}}x^2 \ln \bigg(1-e^{-x}\bigg)dx\)
- get_U(units, T=298.15, **kwargs)
Calculate the internal energy
- get_UoRT(T)
Calculates dimensionless internal energy
\(\frac{U^{vib}}{RT} = \frac{u_D^o}{RT} + 3F\bigg(\frac{ \Theta_D}{T}\bigg)\)
\(F\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3 \int_0^{\frac{\Theta_D}{T}} \frac{x^3 e^x} {e^x-1} dx\)
- get_ZPE()
Calculate zero point energy
\(u^o_D = u^o +\frac{9}{8}R\Theta_D\)
- Returns:
zpe – Zero point energy in eV
- Return type:
- get_q(T)
Calculate the partition function
\(q^{vib} = \exp\bigg(-\frac{u}{3k_B T} - \frac{3}{8} \frac{\Theta_D}{T} - G\big(\frac{\Theta_D}{T}\big)\bigg)\)
\(G\bigg(\frac{\Theta_D}{T}\bigg) = 3\bigg(\frac{T}{ \Theta_D}\bigg)^3\int_0^{\frac{\Theta_D}{T}}x^2 \ln \bigg(1-e^{-x}\bigg)dx\)