pmutt.statmech.vib.EinsteinVib
- class pmutt.statmech.vib.EinsteinVib(einstein_temperature, interaction_energy=0.0)
- Bases: - _ModelBase- Einstein model of a crystal. Equations used sourced from - Sandler, S. I. An Introduction to Applied Statistical Thermodynamics; John Wiley & Sons, 2010. 
 - interaction_energy
- Interaction energy (\(u\)) per atom in eV. Default is 0 eV - Type:
- float, optional 
 
 - __init__(einstein_temperature, interaction_energy=0.0)
 - Methods - __init__(einstein_temperature[, ...])- from_dict(json_obj)- Recreate an object from the JSON representation. - get_Cp(units, **kwargs)- Calculate the heat capacity (constant P) - get_CpoR(T)- Calculates the dimensionless heat capacity at constant pressure - get_Cv(units, **kwargs)- Calculate the heat capacity (constant V) - get_CvoR(T)- Calculates the dimensionless heat capacity at constant volume - get_F(units[, T])- Calculate the Helmholtz energy - get_FoRT(T)- Calculates the dimensionless Helmholtz energy - get_G(units[, T])- Calculate the Gibbs energy - get_GoRT(T)- Calculates the dimensionless Gibbs energy - get_H(units[, T])- Calculate the enthalpy - get_HoRT(T)- Calculates the dimensionless enthalpy - get_S(units, **kwargs)- Calculate the entropy - get_SoR(T)- Calculates the dimensionless entropy - get_U(units[, T])- Calculate the internal energy - get_UoRT(T)- Calculates the dimensionless internal energy - get_ZPE()- Calculates the zero point energy - get_q(T)- Calculates the partition function - to_dict()- Represents object as dictionary with JSON-accepted datatypes - classmethod from_dict(json_obj)
- Recreate an object from the JSON representation. - Parameters:
- json_obj (dict) – JSON representation 
- Returns:
- Obj 
- Return type:
- Appropriate object 
 
 - get_Cp(units, **kwargs)
- Calculate the heat capacity (constant P) 
 - get_CpoR(T)
- Calculates the dimensionless heat capacity at constant pressure - \(\frac{C_P^{vib}}{R}=\frac{C_V^{vib}}{R}=3\bigg(\frac{ \Theta_E}{T}\bigg)^2\frac{\exp(-\frac{\Theta_E}{T})}{\big(1- \exp(\frac{-\Theta_E}{T})\big)^2}\) 
 - get_Cv(units, **kwargs)
- Calculate the heat capacity (constant V) 
 - get_CvoR(T)
- Calculates the dimensionless heat capacity at constant volume - \(\frac{C_V^{vib}}{R}=3\bigg(\frac{\Theta_E}{T}\bigg)^2 \frac{\exp(-\frac{\Theta_E}{T})}{\big(1-\exp(\frac{- \Theta_E}{T})\big)^2}\) 
 - get_F(units, T=298.15, **kwargs)
- Calculate the Helmholtz energy 
 - get_FoRT(T)
- Calculates the dimensionless Helmholtz energy - \(\frac{A^{vib}}{RT}=\frac{U^{vib}}{RT}-\frac{S^{vib}}{R}\) 
 - get_G(units, T=298.15, **kwargs)
- Calculate the Gibbs energy 
 - get_GoRT(T)
- Calculates the dimensionless Gibbs energy - \(\frac{G^{vib}}{RT}=\frac{H^{vib}}{RT}-\frac{S^{vib}}{R}\) 
 - get_H(units, T=298.15, **kwargs)
- Calculate the enthalpy 
 - get_HoRT(T)
- Calculates the dimensionless enthalpy - \(\frac{H^{vib}}{RT}=\frac{U^{vib}}{RT}=\frac{N_A u^0_E}{k_BT} +3\frac{\Theta_E}{T}\bigg(\frac{\exp(-\frac{\Theta_E}{T})}{1- \exp(-\frac{\Theta_E}{T})}\bigg)\) 
 - get_S(units, **kwargs)
- Calculate the entropy 
 - get_SoR(T)
- Calculates the dimensionless entropy - \(\frac{S^{vib}}{R}=3\bigg(\frac{\Theta_E}{T}\frac{\exp\big( \frac{-\Theta_E}{T}\big)}{1-\exp\big(-\frac{\Theta_E}{T}\big)} \bigg)-\ln\bigg(1-\exp\big(\frac{-\Theta_E}{T}\big)\bigg)\) 
 - get_U(units, T=298.15, **kwargs)
- Calculate the internal energy 
 - get_UoRT(T)
- Calculates the dimensionless internal energy - \(\frac{U^{vib}}{RT}=\frac{u^0_E}{k_BT}+3\frac{\Theta_E}{T} \bigg(\frac{\exp(-\frac{\Theta_E}{T})}{1-\exp(-\frac{\Theta_E} {T})}\bigg)\) 
 - get_ZPE()
- Calculates the zero point energy - \(u^0_E=u+\frac{3}{2}\Theta_E k_B\) - Returns:
- zpe – Zero point energy in eV 
- Return type:
 
 - get_q(T)
- Calculates the partition function - \(q^{vib}=\exp\bigg({\frac{-u}{k_BT}}\bigg)\bigg(\frac{ \exp(-\frac{\Theta_E}{2T})}{1-\exp(\frac{-\Theta_E}{T})}\bigg)\)