pmutt.statmech.vib.QRRHOVib
- class pmutt.statmech.vib.QRRHOVib(vib_wavenumbers, Bav=1e-44, v0=100.0, alpha=4, imaginary_substitute=None)
- Bases: - _ModelBase- Vibrational modes using the Quasi Rigid Rotor Harmonic Oscillator approximation. Equations source from: - Li, Y. P.; Gomes, J.; Sharada, S. M.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. C 2015, 119 (4), 1840–1850. 
- Grimme, S. Chem. - A Eur. J. 2012, 18 (32), 9955–9964. 
 - Bav
- Average molecular moment of inertia as a limiting value of small wavenumbers. Default is 1.e-44 kg m2 - Type:
- float, optional 
 
 - imaginary_substitute
- If this value is set, imaginary frequencies are substituted with this value for calculations. Otherwise, imaginary frequencies are ignored. Default is None - Type:
- float, optional 
 
 - __init__(vib_wavenumbers, Bav=1e-44, v0=100.0, alpha=4, imaginary_substitute=None)
 - Methods - __init__(vib_wavenumbers[, Bav, v0, alpha, ...])- from_dict(json_obj)- Recreate an object from the JSON representation. - get_Cp(units, **kwargs)- Calculate the heat capacity (constant P) - get_CpoR(T)- Calculates the dimensionless heat capacity at constant pressure - get_Cv(units, **kwargs)- Calculate the heat capacity (constant V) - get_CvoR(T)- Calculates the dimensionless heat capacity at constant volume - get_F(units[, T])- Calculate the Helmholtz energy - get_FoRT(T)- Calculates the dimensionless Helmholtz energy - get_G(units[, T])- Calculate the Gibbs energy - get_GoRT(T)- Calculates the dimensionless Gibbs energy - get_H(units[, T])- Calculate the enthalpy - get_HoRT(T)- Calculates the dimensionless enthalpy - get_S(units, **kwargs)- Calculate the entropy - get_SoR(T)- Calculates the dimensionless entropy - get_U(units[, T])- Calculate the internal energy - get_UoRT(T)- Calculates the dimensionless internal energy - get_ZPE()- Calculates the zero point energy - get_q()- Calculates the partition function - Prints the wavenumbers that will be used in a thermodynamic calculation. - to_dict()- Represents object as dictionary with JSON-accepted datatypes - Attributes - classmethod from_dict(json_obj)
- Recreate an object from the JSON representation. - Parameters:
- json_obj (dict) – JSON representation 
- Returns:
- QRRHOVib 
- Return type:
- QRRHOVib object 
 
 - get_Cp(units, **kwargs)
- Calculate the heat capacity (constant P) 
 - get_CpoR(T)
- Calculates the dimensionless heat capacity at constant pressure - \(\frac{C_{P}^{qRRHO}} {R} = \frac{C_{V}^{qRRHO}} {R}\) 
 - get_Cv(units, **kwargs)
- Calculate the heat capacity (constant V) 
 - get_CvoR(T)
- Calculates the dimensionless heat capacity at constant volume - \(\frac {C_{v}^{qRRHO}}{R} = \sum_{i}\omega_i\frac{C_{v,i} ^{RRHO}}{R} + \frac{1}{2}(1-\omega_i)\) - \(\frac{C_{v}^{RRHO}}{R} = \sum_{i}\exp \bigg(-\frac{ \Theta_i}{T}\bigg) \bigg(\frac{\Theta_i}{T}\frac{1}{1-\exp(- \frac{\Theta_i}{T})}\bigg)^2\) 
 - get_F(units, T=298.15, **kwargs)
- Calculate the Helmholtz energy 
 - get_FoRT(T)
- Calculates the dimensionless Helmholtz energy - \(\frac{A^{qRRHO}}{RT} = \frac{U^{qRRHO}}{RT}- \frac{S^{qRRHO}}{R}\) 
 - get_G(units, T=298.15, **kwargs)
- Calculate the Gibbs energy 
 - get_GoRT(T)
- Calculates the dimensionless Gibbs energy - \(\frac{G^{qRRHO}}{RT} = \frac{H^{qRRHO}}{RT}- \frac{S^{qRRHO}}{R}\) 
 - get_H(units, T=298.15, **kwargs)
- Calculate the enthalpy 
 - get_HoRT(T)
- Calculates the dimensionless enthalpy - \(\frac{H^{qRRHO}} {RT} = \frac{U^{qRRHO}} {RT}\) 
 - get_S(units, **kwargs)
- Calculate the entropy 
 - get_SoR(T)
- Calculates the dimensionless entropy - \(\frac{S^{qRRHO}}{R}=\sum_i\omega_i\frac{S_i^{H}}{R}+(1- \omega_i)\frac{S_i^{RRHO}}{R}\) - \(\frac {S^{RRHO}_i}{R} = \frac{1}{2} + \log \bigg(\bigg[ \frac{8\pi^3\mu'_ik_BT}{h^2}\bigg]^{\frac{1}{2}}\bigg)\) - \(\frac {S^{H}_i}{R}=\bigg(\frac{\Theta_i}{T}\bigg)\frac{1} {\exp(\frac{\Theta_i}{T})-1}-\log\bigg(1-\exp(\frac{-\Theta_i} {T})\bigg)\) 
 - get_U(units, T=298.15, **kwargs)
- Calculate the internal energy 
 - get_UoRT(T)
- Calculates the dimensionless internal energy - \(\frac {U^{qRRHO}}{RT} = \sum_{i}\omega_i\frac{U^{RRHO}}{RT} + \frac{1}{2}(1-\omega_i)\) - \(\frac {U^{RRHO}_{i}}{RT} = \frac{\Theta_i}{T} \bigg( \frac{1}{2} + \frac{\exp(-\frac{\Theta_i}{T})}{1-\exp(-\frac{ \Theta_i}{T})}\bigg)\) 
 - get_ZPE()
- Calculates the zero point energy - \(ZPE=\frac{1}{2}k_b\sum_i \omega_i\Theta_{V,i}\) - Returns:
- zpe – Zero point energy in eV 
- Return type:
 
 - get_q()
- Calculates the partition function - Returns:
- q_vib – Vibrational partition function 
- Return type:
 
 - print_calc_wavenumbers()
- Prints the wavenumbers that will be used in a thermodynamic calculation. If - self.imaginary_substituteis a float, then imaginary frequencies are replaced with that value. Otherwise, imaginary frequencies are ignored.
 - to_dict()
- Represents object as dictionary with JSON-accepted datatypes - Returns:
- obj_dict 
- Return type:
 
 - property vib_wavenumbers